
TEACHING	A	COMPUTER	TO	SING:	INTEGRATING	COMPUTING	AND	MUSIC	IN	A	
MIDDLE	SCHOOL,	AFTER‐SCHOOL	PROGRAM	

	 Jesse	M.	Heines	 Daniel	A.	Walzer	
	 Dept.	of	Computer	Science	 Dept.	of	Music	
	 Univ.	of	Massachusetts	Lowell	 Univ.	of	Massachusetts	Lowell	
	 Jesse_Heines@uml.edu	 Daniel_Walzer@uml.edu	

ABSTRACT	
This	paper	reports	on	an	after‐school	program	that	introduced	middle	school	

students	to	computing	through	music.	The	program	ran	for	two	years,	from	October	2015	
through	April	2017.	It	involved	singing,	encoding	music	with	ABC	notation,	and	program‐
ming	music	with	Pencil	Code.	We	describe	the	program’s	goals	and	the	activities	students	
pursued,	as	well	as	suggestions	for	improvement.	While	rigorous	evaluation	of	such	a	
program	is	difficult,	we	present	survey	and	focus	group	results	that	show	that	students’	
attitudes	toward	the	program	were	positive	and	that	they	did	learn	some	programming.		

FROM	SINGING	TO	PROGRAMMING	
It	probably	goes	without	saying	that	most	educators,	regardless	of	field,	think	it’s	

important	for	students	to	be	computer	literate	and	even	to	learn	at	least	a	little	about	how	
to	program.	But	how	do	we	“hook	’em,”	especially	in	an	after‐school	program	that	doesn’t	
even	begin	until	after	they’ve	been	in	school	for	seven	hours	and	are	ready	to	just	play	and	
hang	out	with	their	friends?	

Our	approach	has	been	to	work	with	a	dynamic	music	teacher	whom	the	children	
adore,	have	her	teach	them	songs	with	multiple	parts	and	modest	complexity,	and	then	
have	the	children	encode	those	songs	in	ABC	notation	[2,	27]	and	program	them	in	Pencil	
Code	[16].	(In	the	first	year	we	also	used	Audacity	[1]	and	Scratch	[20],	but	we	switched	to	
ABC	notation	and	Pencil	Code	in	our	second	year.)	The	students	“performed”	their	crea‐
tions	for	each	other	using	a	computer	projector	and	the	room’s	sound	system,	thereby	
enjoying	an	outlet	for	their	work	and	learning	from	what	others	had	produced.	

While	this	approach	sounds	straightforward,	it	wasn’t	easy	to	implement.	Despite	
their	love	of	listening	to—and	singing	along	with—popular	music	with	their	friends,	the	
children	were	initially	shy	about	singing	in	a	class	setting.	The	music	teacher	worked	hard	
to	get	them	to	overcome	their	reluctance.	The	team	struggled	to	engage	them	in	the	
computer	part	of	the	program.	Due	to	our	lack	of	experience	with	this	age	group,	it	took	
some	time	to	“get	our	footing.”	However,	as	discussed	in	this	paper,	persistence	paid	off	
and	the	children	indeed	made	progress	in	both	singing	and	programming.	

ENABLING	RESEARCH	
Our	research	explores	the	intersection	of	computing	and	music	at	the	middle	school	

level.	The	basis	for	this	research	is	our	prior	work	in	Performamatics	[6,	14,	15].	The	first	of	
our	prior	projects	explored	interdisciplinary	connections	between	computer	science	and	
art,	music,	and	theater	[5,	7,	8,	9,	13,	18].	It	then	focused	on	computing+music	[8,	19],	
which	for	us	turned	out	to	be	the	collaboration	that	had	the	most	“traction.”	The	popularity	
of	the	university	courses	we	built	and	the	positive	research	results	we	observed	enticed	us	
to	see	if	we	could	achieve	similar	gains	with	younger	students.		

Teaching	a	Computer	to	Sing	builds	on	the	premise	outlined	by	Magerko	et	al.	[12]	
that	creative	coding	can	enhance	musicianship	by	helping	students	identify	a	song’s	
structure.	It	also	builds	on	the	concept	of	“coding	through	play”	described	by	Stinson	[23],	
who	taught	Scratch	coding	by	having	children	follow	robots	through	a	series	of	imaginative	
storytelling	activities.	The	key	here	is	that	children	saw	immediate,	tangible	results	as	the	
robots	responded	to	various	commands.	Programming	music	also	yielded	immediate	
results,	which	children	learned	to	identify	as	“right”	or	“wrong”	by	what	they	heard.	

Ho	[10]	conducted	a	five‐year	study	to	evaluate	the	ability	of	information	
technology	to	inspire	learner‐centered	music	creation	practices	in	young	students.	Both	
students	and	teachers	remarked	that	the	use	of	MIDI	improved	pitch	and	rhythmic	
accuracy	when	added	to	traditional	choral	rehearsal	techniques	and	pedagogy.	Our	work	
builds	on	this	finding	by	having	students	work	with	the	same	music	in	multiple	modes.	

Studer	[24]	explored	the	use	of	computers	in	choral	rehearsals	and	noted	that	music	
notation	programs	are	highly	useful	for	isolating	each	part.	We	took	an	analogous	
approach:	having	children	write	programs	that	“sang”	multiple	parts	to	help	them	learn	
each	one.	Studer	also	found	that	music	notation	programs	enhance	STEM	learning	along	
with	musical	competency.	Our	project	went	one	step	further:	writing	computer	programs	
to	play	music	using	standard	computing	constructs.	

PROGRAM	LOGISTICS	
Teaching	a	Computer	to	Sing	is	an	after‐school	program.	It	ran	for	2½	hours	on	

Tuesdays	and	Thursdays	from	October	2015	through	April	2017.	Students	spent	the	first	
half	of	the	session	singing	songs	and	then,	after	a	break,	spent	the	second	coding	those	
songs	using	ABC	notation	and	Pencil	Code.	Sometimes	we	used	the	last	10‐15	minutes	of	
the	computing	session	for	children	to	show	their	work	to	the	entire	group.	At	other	times,	
when	students	were	fully	engaged	in	the	day’s	activities,	we	felt	it	best	to	let	them	continue	
what	they	were	doing	rather	than	interrupt	them	to	share	their	creations.	

Software	Choices	
We	began	the	program	in	2015	using	Scratch,	but	the	middle	school	students	had	a	

lot	of	trouble	converting	music	notation	to	MIDI	numbers	[28].	First,	converting	musical	
scores	to	MIDI	involved	two	steps:	figuring	out	a	note’s	alphabetic	name	(such	as	C),	and	
then	converting	that	note	to	its	MIDI	value	(such	as	60).	Second,	the	resulting	code	bore	
little	resemblance	to	the	musical	notation.	For	example,	it’s	pretty	hard	to	know	that	the	
code	in	Figure	1(a)	plays	Frère	Jacques	even	if	one	compares	it	to	the	sheet	music	in	Figure	
1(b).	The	Pencil	Code	version	in	Figure	1(c)	that	uses	ABC	notation	still	requires	a	bit	of	
interpretation,	but	it	is	clearly	easier	to	explain	to	students	than	the	Scratch	version.	

To	help	students	make	the	transition	from	sheet	music	to	ABC	notation,	we	used	
EasyABC	[21].	This	free	program	allows	one	to	enter	ABC	notation	in	one	window	and	see	
the	resultant	score	in	another	window.	Students	can	thus	compare	the	resultant	score	with	
the	original	score	that	they	have	on	paper	to	ensure	that	they	are	the	same.	If	the	two	
scores	are	not	identical,	the	ABC	notation	is	easily	edited	to	correct	any	problems.	

Once	the	ABC	notation	is	entered	into	EasyABC,	it	is	easy	to	copy	and	paste	that	into	
Pencil	Code.	The	final	step	is	to	enclose	the	Pencil	Code	ABC	notation	in	quotes	and	add	
code	to	pass	it	to	a	function	that	plays	it.	“Pure”	Pencil	Code	using	the	built‐in	“play”	
function	is	shown	in	Figure	1(c),	but	a	little	additional	code	displayed	a	dynamic	keyboard	

that	showed	which	key	
was	being	played	as	
each	note	sounded.	We	
wrote	a	custom	function	
“sing”	that	allowed	
playing	up	to	four	parts	
simultaneously	by	
specifying	which	phrase	
to	play	on	which	piano.	

The	code	in	
Figure	2	(shown	in	text	
rather	than	block	mode)	
calls	our	custom	“sing”	
function	to	play	Frère	
Jacques	as	a	round	(in	
the	key	of	C).	Note	that	
line	10	rests	part	2	for	8	
beats	before	“singing”	
that	part,	thus	creating	
the	round.	The	graphic	
in	Figure	2	shows	the	
keyboards	as	they	
appear	during	playback.		

In	the	second	
year	we	introduced	
Soundtrap	[22].	This	
online	tool	allowed	
students	to	record	their	
own	songs	and	sounds	
to	create	their	own	
mashups.	This	is	a	
different	type	of	coding	than	done	with	the	other	tools,	but	it	proved	interesting	to	students	
and	allowed	them	to	extend	their	work	ABC	notation	and	Pencil	Code.	That	is,	Soundtrap	
allowed	them	to	capture	what	they	had	done	in	the	other	programs	and	remix	it	along	with	
pre‐recorded	sounds	and	effects	as	well	as	their	own	voices	to	create	new	compositions.		

Song	Choices	
Songs	were	mostly	chosen	by	the	music	teacher.	We	began	with	popular	songs	such	

Rachel	Platten’s	Fight	Song	[17],	Taylor	Swift’s	Shake	It	Off	[25],	and	Shawn	Mendes’s	
Stitches	[4].	We	had	an	arranger	create	simple	harmony	parts	for	these	songs,	but	these	did	
not	prove	popular	because	students	had	trouble	with	the	complexity	of	the	songs’	rhythms.	

The	music	teacher	suggested	that	we	switch	to	“partner	songs,”	which	were	sets	of	
three	simple,	complementary	melodies	meant	to	be	sung	together.	One	such	set	consisted	
of	One	Bottle	of	Pop,	Don’t	Throw	Your	Trash	in	My	Backyard,	and	Fish	and	Chips	and	Vinegar	
[youtu.be/u-TdsmPHjo0].	It	was	much	easier	for	the	students	to	sing	and	code	these	songs	
in	multiple	parts.	

	
(a)	

(b)	

	
(c)	

Figure	1.	Frère	Jacques	in	(a)	Scratch,	(b)	standard	music	
notation,	and	(c)	Pencil	Code	using	ABC	notation.	

Student	Assistants	
One	of	the	program’s	key	features	

was	the	relatively	large	number	of	univer‐
sity	student	assistants	we	employed.	We	
had	originally	budgeted	for	two,	but	it	
quickly	became	apparent	that	that	was	not	
enough.	We	really	needed	one	university	
student	for	each	pair	of	middle	school	
students,	so	we	increased	the	number	of	
assistants	to	six.		

To	establish	rapport,	the	university	
students	(and	professors)	sang	with	the	
middle	schoolers	as	well	as	assisted	them	
both	with	reading	music	(which	was	
necessary	to	translate	scores	into	ABC	
notation)	and	actual	coding.	About	half	the	
assistants	were	music	majors,	while	the	
other	half	were	computer	science	majors.		

In	the	first	year	we	had	only	one	
female	assistant:	Nicole.	With	12	female	and	
two	male	children	in	the	program,	we	felt	
that	it	was	important	to	recruit	more,	
especially	since	Nicole	provided	us	with	
invaluable	insights	about	the	complex	
issues	that	middle	school	girls	deal	with	and	
thus	helped	us	weather	a	number	of	storms.	
In	the	second	year	we	had	three	female	assistants	and	two	males.	

As	with	any	program	that	uses	student	assistants,	some	worked	out	well	and	some	
did	not.	Most	were	good	at	helping	to	keep	the	children	on	task	and	getting	them	past	
hurdles	such	as	computer	freeze‐ups	and	simple	programming	issues.	Some	made	excellent	
suggestions	during	our	activity	planning	sessions,	and	some	provided	insightful	observa‐
tions	when	we	reviewed	each	day’s	experiences.	

Some	assistants	even	established	strong	personal	relationships	with	the	middle	
schoolers	and	functioned	as	role	models,	which	contributed	significantly	to	the	clubhouse	
atmosphere	we	were	trying	to	maintain.	When	one	assistant	was	absent,	the	children	were	
always	disappointed	and	asked	if	they	would	be	there	the	next	time	we	met.	

Additional	Incentives	
During	the	second	year	we	actively	sought	ways	to	motivate	the	children.	We	

produced	a	CD	of	their	work	that	proved	to	be	a	very	popular	and	motivating	activity.	
Every	student	contributed	at	least	one	track	and	many	contributed	multiple	tracks.	We	
made	about	80	copies	to	fulfill	all	of	the	students’	requests,	and	they	gave	them	to	their	
friends	and	families	for	the	holidays.	

Additional	Resources	
Throughout	the	program	we	created	handouts	with	titles	such	as	Getting	Started	

 1 for [1..2] #	part	1,	phrase	1	
 2 sing 1, "C D E C"
 3 for [1..2]						#	part	1,	phrase	2	
 4 sing 1, "E F G2"
 5 for [1..2]						#	part	1,	phrase	3	
 6 sing 1, "G/2 A/2 G/2 F/2 E C"
 7 for [1..2]						#	part	1,	phrase	4	
 8 sing 1, "C G, C2"
 9
10 sing 2,"Z8"		#	rest	for	8	beats	
11 for [1..2]						#	part	2,	phrase	1	
12 sing 2,"C D E C"
13 for [1..2]						#	part	2,	phrase	2	
14 sing 2,"E F G2"
15 for [1..2]						#	part	2,	phrase	3	
16 sing 2, "G/2 A/2 G/2 F/2 E C"
17 for [1..2]						#	part	2,	phrase	4	
18 sing 2, "C G, C2"	

Figure	2.	Playing	Frère	Jacques	as	a	round.

with	Pencil	Code,	Understanding	Note	and	Rest	Values,	and	Using	the	TACTS	Pencil	Code	
Functions.	These	handouts,	as	well	as	links	to	demonstration	programs	and	other	
resources,	are	available	at	jheines.github.io/tacts/Workshops,	a	website	we	created	to	
support	teacher	workshops	that	we	taught	at	the	2017	CCSCNE	and	CSTA	conferences.	

QUESTIONS	AND	FINDINGS	
Our	project	investigated	two	instructional	questions	and	two	supporting	questions.	

We	attempted	to	answer	these	questions	both	by	documenting	our	own	informal	
observations	and	by	employing	surveys	and	focus	groups	conducted	by	the	evaluation	
team.	The	former	obviously	suffer	somewhat	from	observer	bias,	while	the	latter	suffer	
somewhat	from	small	sample	size.	Nevertheless,	we	feel	that	we	can	draw	a	number	of	
conclusions	from	our	experiences	that	can	be	reasonably	supported	by	credible	anecdotal	
evidence	if	not	by	hard	numbers	and	statistical	significance.	

Instructional	Questions	
(1)		Can	middle	schoolers	follow	the	connections	from	singing	to	digitized	

sound	to	computer	notation	and	back	to	music	to	help	them	learn	to	program	using	
songs	they	like	to	sing?	

Our	answer	to	this	question	is	an	unqualified	“yes.”	We	would	go	even	further	to	say	
“yes,	and	sometimes	with	enthusiasm.”	Of	course,	not	every	student	was	“into”	the	coding	
part	of	the	program,	and	some	days	it	seemed	like	none	wanted	to	do	any	coding	at	all.	(As	
every	parent	knows,	such	is	life	when	working	with	children.)	But	on	other	days	a	good	
number	of	students	exhibited	real	excitement	about	their	ability	to	“teach	a	computer	to	
sing”	and	eagerly	lined	up	for	“show	and	tell”	at	the	end	of	the	day	to	demonstrate	their	
accomplishments	to	others.	

We	began	the	year	having	students	code	music	as	a	series	of	Pencil	Code	play	blocks.	
As	the	year	progressed,	we	introduced	progressively	more	advanced	computing	concepts.	
The	first	of	these	was	simple	loops	(like	those	in	Figure	2(c)),	which	allowed	students	to	
replay	musical	phrases	that	repeated	in	succession.	Next,	we	introduced	loops	with	control	
variables,	such	as	for k in [1..3].	This	allowed	students	to	make	the	connection	between	
songs	with	larger	repetitive	structures	that	used	first	and	second	endings	and	conditional	if	
statements	in	code.	We	then	introduced	general	variables,	which	allowed	us	to	store	and	
reuse	musical	phrases	coded	as	ABC	notation	strings.	A	couple	of	students	even	got	as	far	
as	indexed	variables	(one‐dimensional	arrays),	which	we	used	as	two	parallel	structures	to	
pair	each	note	with	its	lyric.		

Only	one	student	in	our	program	was	a	7th	grader,	while	all	others	were	5th	and	6th	
graders.	Only	one	had	prior	experience	with	computer	programming,	and	about	25%	did	
not	have	computers	at	home.	Given	these	demographics,	the	fact	that	the	students	had	
already	been	in	school	for	more	than	seven	hours	by	the	time	they	began	programming	
with	us,	and	our	own	inexperience	in	teaching	middle	school	students,	we	feel	that	the	
programming	concepts	we	were	able	to	introduce	represent	a	reasonable	level	of	learning.	

(2)		Conversely,	can	programming	their	individual	parts	help	students	learn	to	
sing	in	three‐	and	four‐part	harmony?	

During	initial	discussions,	the	music	teacher	told	the	professors	that	she	thought	it	
would	be	difficult	for	the	children	to	sing	in	more	than	two	parts	because	they	had	never	
done	it	before	and	had	no	familiarity	with	it.	By	the	end	of	the	year,	however,	they	were	

successfully	singing	the	“partner	songs”	in	three	parts.	They	even	cheered	when	they	all	
finished	at	the	same	time!	We	can’t	give	all	the	credit	for	that	progress	to	the	work	in	pro‐
gramming	those	songs,	but	the	music	teacher	felt	that	at	least	some	credit	was	due	there.	

One	of	the	programming	techniques	that	seemed	to	help	students	learn	multipart	
songs	was	the	use	of	variables	to	store	and	reuse	musical	phrases	coded	as	ABC	notation	
strings.	This	helped	students	see	song	structures,	notice	where	phrases	repeated,	and	
understand	how	the	melody	lines	went	together.	Again,	we	do	not	want	to	overstate	this	
result,	as	it	was	impossible	to	measure	objectively.	However,	we	have	learned	to	trust	the	
music	teacher’s	instincts,	as	she	is	clearly	highly	attuned	to	the	students’	capabilities.	

Supporting	Questions	
(3)		What	resources,	models,	and	tools	are	necessary	to	integrate	STEM	into	a	

middle	school,	after‐school	choral	program?	
The	school	resources	were	severely	limited.	The	computer	network	and	Internet	

access	were	so	severely	tied	down	that	Windows	systems	could	not	access	the	network	at	
all	and	sites	such	as	YouTube	were	not	accessible	without	teacher	credentials.	Luckily,	
access	to	all	the	music	sites	mentioned	earlier	was	available.	

We	were	also	unable	to	install	software	on	the	school	systems.	No	one	in	the	school	
had	authority	to	do	so,	either.	We	had	to	make	a	request	of	the	central	school	district	office,	
and	that	took	weeks	to	be	fulfilled.	To	resolve	this	issue,	we	were	fortunate	to	be	able	to	
buy	systems	specifically	for	the	project’s	exclusive	use.	

Our	model	for	the	after‐school	program	was	initially	what	we	were	used	to:	a	labor‐
atory	class.	This	did	not	prove	viable,	as	the	children	were	simply	unable	to	pay	attention	to	
instructions	for	more	than	a	minute	or	two	in	the	after‐school	environment.	We	therefore	
transitioned	toward	a	clubhouse	model,	where	students	worked	one‐on‐one	or	two‐on‐one	
with	a	professor,	university	student	assistant,	or	another	middle	school	student.		

As	noted	earlier,	we	prepared	handouts	with	instructions	and	illustrations	so	that	
the	children	could	work	on	their	own	rather	than	listen	to	us	explain	how	to	accomplish	the	
day’s	goals.	We	also	hired	three	times	the	number	of	university	student	assistants	than	we	
had	originally	planned,	as	it	became	evident	that	they	were	needed	in	the	clubhouse	model.	

The	tools	we	used	have	been	discussed	previously,	but	it	is	important	to	
reemphasize	that	they	changed	throughout	the	program.	The	switch	from	Scratch	to	Pencil	
Code	was	the	biggest	unanticipated	change	at	the	beginning	of	the	first	year,	and	the	
discovery	of	EasyABC	for	writing	ABC	notation	proved	to	be	a	godsend.	

(4)		Can	the	involvement	of	older	students	and	teachers	who	match	the	
students’	racial	and/or	cultural	backgrounds	have	a	positive	effect	on	the	“people	
like	me	don’t	(or	can’t)	do	that”	belief	that	some	researchers	claim	is	a	factor	in	
underrepresented	groups’	disproportionally	small	participation	in	STEM?	

One	of	the	issues	that	concerned	us	was	our	ability	to	“connect”	with	the	middle	
school	students.	Almost	all	of	the	children	had	very	different	racial	profiles	from	our	own,	
and,	as	noted	earlier,	the	vast	majority	(86%)	were	female.	Numerous	authors	such	as	Kohl	
[11],	Delpit	[3],	and	Tatum	[26]	have	written	about	issues	related	to	race	in	the	classroom,	
and	we	feared	that	at	least	some	of	those	issues	extended	to	gender,	as	well.		

Looking	back,	it	appears	that	we	need	not	have	been	so	concerned,	as	racial	and	
cultural	attributes	did	not	appear	to	be	major	stumbling	blocks.	The	children	did	build	

relationships	faster	with	some	university	students	than	with	others	or	with	the	professors,	
but	with	time	all	facilitators	were	able	to	build	relationships	with	all	of	the	students.	

Peer	pressure	seemed	to	play	a	larger	role	in	relationship‐building.	In	follow‐up	
interviews	conducted	by	our	evaluation	team,	one	professor	observed	that	he	had	no	
trouble	working	with	any	child	one‐on‐one.	As	soon	as	two	or	three	of	the	students	got	
together,	however,	they	seemed	to	shut	him	out.	He	said	he	felt	that	the	children—
especially	the	girls—appeared	reluctant	to	admit	to	their	peers	that	they	were	comfortable	
talking	to	a	teacher,	especially	an	older	white	male.	

The	bottom	line	is	that	while	we	can	only	report	observational	and	anecdotal	
evidence,	in	our	case	we	feel	that	the	premise	of	this	question	does	not	appear	to	be	
supported.	That	said,	we	acknowledge	that	our	project	had	a	small	sample	size	and	that	our	
results	are	dependent	on	the	many	specific	personalities	involved.	Thus,	it	is	difficult—if	
not	impossible—to	generalize	these	results.	

Lessons	Learned	
Based	on	these	experiences,	the	main	lessons	we	learned	are	as	follows.	

 Working	with	children	after	they’ve	been	in	school	for	seven	or	more	hours	is	hard.	
There	are	times	when	one	has	to	just	let	them	play.	In	addition,	one	must	understand	
that	some	days	they	just	won’t	want	to	code,	and	that	pushing	them	to	do	so	is	futile.	
There	were	even	days	when	the	beloved	and	experienced	music	teacher	found	it	
difficult	to	get	them	to	sing.	“Go	with	the	flow.”	

 Knowing	how	the	children	perceive	a	program	such	as	this	is	also	hard.	Attitudes	often	
cannot	be	seen,	and	one	must	be	very	careful	not	to	make	assumptions	about	observed	
behaviors.		

 When	meeting	only	once	or	twice	a	week,	there	is	a	strong	need	for	concrete,	over‐
arching	goals	to	tie	sessions	together.	

 University	student	assistants	must	be	vetted	carefully.	We	had	no	major	problems	with	
any	assistants’	interactions	with	the	children,	but	it	was	clear	that	some	were	far	better	
than	others	at	helping	the	children	learn	and	remain	on	task.	

 There	is	simply	no	substitute	for	partnering	with	an	experienced	teacher	who	has	a	
strong	rapport	with	the	children	and	understands	where	they’re	coming	from.	On	
several	occasions,	our	music	teacher	partner	pointed	out	where	some	of	our	
assessments	and	impressions	of	how	the	program	was	going	were	wrong.	For	example,	
we	thought	that	one	student	who	didn’t	seem	to	engage	with	the	program	simply	didn’t	
want	to	be	in	it.	Our	teacher	partner	pointed	out	that	all	of	this	student’s	friends	had	
dropped	out	of	the	program	for	one	reason	or	another,	and	the	fact	that	she	was	still	
with	us	was	a	strong	indicator	of	her	desire	to	be	there.	

 Despite	all	the	time	and	patience	it	takes	to	get	children	to	focus	on	learning	in	an	after‐
school	program	and	the	inevitable	ups	and	downs	of	such	an	endeavor,	there	are	
numerous,	priceless,	unforgettable	“ah‐ha”	moments	that	make	the	effort	worthwhile.		

FORMAL	EVALUATION	
Our	project	was	supported	by	an	evaluation	team	centered	in	the	UMass	Lowell	

Center	for	Program	Evaluation.	The	team	observed	after‐school	sessions	and	administered	
surveys	and	conducted	focus	groups	with	both	students	and	faculty.	We	present	just	a	few	

of	their	more	interesting	findings	here	in	descriptive	terms,	because	all	but	one	of	the	
statistical	measures	were	not	significant	due	to	small	sample	sizes.	

Student	Surveys	and	Focus	Groups	
Student	surveys	and	focus	groups	revealed	two	major	outcomes,	although	we	stress	

again	that	these	are	not	statistically	significant.	
 Measures	of	students’	attitudes	toward	music	and	their	perceptions	of	their	own	music‐

related	abilities	both	increased	slightly	from	pre‐	to	post‐program	assessments.	
 Measures	of	students’	attitudes	toward	computer	programming	remained	the	same,	but	

their	perceptions	of	their	own	computer‐related	abilities	increased	slightly	from	pre‐	to	
post‐program	assessments.	

To	demonstrate	just	how	tricky	it	is	to	conduct	formal	evaluation	on	this	type	of	
program,	consider	the	following	student	responses	to	open‐ended	questions.	The	reasons	
cited	most	frequently	for	liking	computer	programming	were	“making	games,	music,	and	
websites,”	“coding,”	and	“I	don’t	know.”	Those	cited	most	frequently	for	not	liking	computer	
programming	were	“boring,”	“hard,”	“so	much	to	do,”	and	“I	don’t	know.”	We	find	it	
interesting	that	“coding”	shows	up	in	the	positive	list,	while	“hard”	and	“so	much	to	do”	
show	up	in	the	negative	list.	These	seem	contradictory,	and	of	course	the	“I	don’t	know”	
response	is	not	helpful,	particularly	because	it	appears	in	both	lists.	

A	more	positive	outcome	that	the	evaluation	team	reported	was	that	67%	of	
students	responded	“yes”	when	asked	if	computer	science	and	music	were	related	in	any	
way.	We	interpret	this	as	at	least	an	indication	that	most	students	were	able	to	achieve	one	
of	our	primary	goals:	to	have	them	follow	the	connections	from	singing	to	digitized	sound	
to	computer	notation	and	back	to	music.	

The	focus	group	discussion	clearly	revealed	that	students	preferred	working	with	
EasyABC	and	Pencil	Code	to	Audacity	and	Scratch.	They	like	the	visual	aspects	of	EasyABC	
and	the	versatility	of	Pencil	Code,	that	is,	its	ability	to	support	various	types	of	projects.	

It	is	also	telling	that	the	students’	two	most	prominent	suggestions	across	both	
years	for	improving	the	program	were	related	to	having	more	snacks	and	more	fun.	We	feel	
that	such	comments	are	typical	for	an	after‐school	program,	and	we	tried	to	accommodate	
them	by	allowing	snacks	during	the	program	and	giving	students	more	free	time	after	they	
completed	coding	activities.	

Facilitator	Surveys	and	Focus	Groups	
As	discussed	above,	a	number	of	changes	were	made	in	Year	2	of	the	program.	

Facilitator	surveys	and	focus	groups	attempted	to	assess	the	effect	of	these	differences,	at	
least	from	the	facilitators’	perspective.	

Using	a	five‐point	Likert	scale,	facilitators	were	asked	whether	students	were	able	to	
follow	the	connections	from	singing	to	digitized	sound	to	computer	notation	and	back	to	
music.	As	shown	in	Table	1,	their	responses	were	far	more	positive	in	Year	2	than	in	Year	1,	
and	even	with	the	small	sample	size	the	difference	was	statistically	significant	(p	<	.05).	

Facilitators	were	also	asked	if	they	felt	that	(a)	using	songs	that	students	like	to	sing	
helped	them	learn	to	program,	(b)	students’	efficacy	for	programming	had	improved	
throughout		the	program,	and	(c)	working	with	adults	who	match	the	students’	racial	or	
cultural	backgrounds	had	a	positive	effect	on	the	students.	The	Likert	scale	results	for	these	
questions	increased	from	Year	1	to	Year	2,	but	not	enough	to	be	statistically	significant.	

Table	1.	Facilitators’	Perspectives	on	Program	Objectives	
Objective	 Year N Mean Std.Err.	 Sig.	

Follow	connections	both	ways	
1	 4 2.00	 0.577	

p	<	.05	
2	 8 3.88	 0.350	

Learn	to	program	using	songs	
1	 4 3.50	 0.289	

no	
2	 8 4.13	 0.295	

Improve	efficacy	for	programming
1	 4 3.50	 0.289	

no	
2	 7 3.71	 0.184	

Racial/cultural	matching	positive	
1	 4 2.75	 0.479	

no	
2	 7 3.71	 0.184	

	
The	differences	between	facilitators’	responses	to	open‐ended	questions	in	Year	1	

and	Year	2	are	telling	with	regard	to	the	program’s	development.		
 In	Year	1,	responses	focused	on	what	they	needed	to	teach.	In	Year	2,	they	focused	on	

the	need	for	more	structured	plans.		
 In	Year	1,	their	favorite	songs	to	work	on	were	the	partner	songs.	In	Year	2,	their	

favorites	were	those	that	supported	loops.	
A	major	theme	in	the	focus	group	discussion	was	relationships,	that	is,	establishing	a	

rapport	with	the	children	so	that	they	would	be	receptive	to	instruction.	This	improved	
greatly	in	Year	2	with	more	careful	vetting	of	university	student	assistants	and	the	
professors’	acceptance	of	the	need	to	work	one‐on‐one	or	one‐on‐two.	In	addition,	we	all	
had	to	learn	to	allow	for	the	ebb	and	flow	of	the	children’s	learning	and	attention	span	in	an	
after‐school	program.	

RECOMMENDATIONS	FOR	FUTURE	PROGRAMS	
 Structure	the	program	to	include	ample	time	for	facilitator	planning	and	preparation	

outside	of	the	time	spent	with	the	children.		
Comment:	This	was	difficult	for	us	given	our	office	locations	of	different	campuses	

and	the	differences	in	our	teaching	schedules.	We	also	would	have	benefitted	from	more	
outside	the	classroom	time	with	the	university	student	facilitators.	

 Have	many	structured	activities	available	to	keep	the	children	engaged.	
Comment:	In	most	sessions,	we	had	structured	activities	for	the	main	theme	of	the	

day,	but	it	would	have	been	good	to	have	had	several	backup	structured	activities,	as	well.	

 Ensure	that	all	facilitators	circulate	throughout	the	room	and	work	with	the	children	
one‐on‐one	or	in	pairs.		

Comment:	Some	of	the	university	student	assistants	thought	that	they	should	wait	
until	a	child	asked	for	assistance,	which	they	seldom	did.	We	talked	with	the	student	
assistants	about	this,	but	some	were	still	reluctant	to	simply	sit	down	next	to	a	child	and	
ask	him	or	her	to	show	them	what	they	were	doing.	On	the	other	hand,	the	children	were	
very	receptive	to	help	and	advice	when	it	was	offered.	

 Present	short	narratives	or	movie	clips	and	discuss	famous	minorities	in	STEM.	
Comment:	The	children	were	very	receptive	to	clips	that	we	did	show	them,	and	it	

would	have	been	good	to	do	that	more	often.	

 Provide	more	opportunities	for	students	to	share	what	they	have	done	in	the	program.	

Comment:	The	children	were	all	strongly	engaged	with	the	creation	of	the	holiday	
CD.	In	retrospect,	we	could	have	created	a	second	CD	or	had	some	other	culminating	joint	
project	to	further	motivate	their	participation.	

ACKNOWLEDGMENTS	
This	work	is	supported	by	Award	No.	1515767	from	the	National	Science	

Foundation	Division	of	Research	on	Learning.	Any	opinions,	findings,	conclusions,	or	
recommendations	expressed	in	this	proposal	are	solely	those	of	the	authors	and	do	not	
necessarily	reflect	the	views	of	the	National	Science	Foundation.	

REFERENCES	
[1]	 Audacity	Open	Source	Development	Team	(2011).	Audacity:	The	Free,	Cross‐Platform	Audio	Editor	and	Recorder.	

audacity.sourceforge.net	accessed	Oct.	25,	2014.	
[2]	 Chambers,	J.	(2016).	An	ABC	Primer.	trillian.mit.edu/~jc/music/abc/doc/ABCprimer.html	accessed	Aug.	16,	2016.	
[3]	 Delpit,	L.	(2006).	Other	People's	Children:	Cultural	Conflict	in	the	Classroom.	New	York:	The	New	Press.	
[4]	 Geiger,	T.,	Parker,	D.,	&	Kyriakides,	D.	(2015).	Stitches:	Hal	Leonard	Music	Publishing.	
[5]	 Greher,	G.R.,	&	Heines,	J.M.	(2009).	Sound	Thinking:	Conceptualizing	the	Art	and	Science	of	Digital	Audio	for	an	Inter‐

disciplinary	General	Education	Course.	Assoc.	for	Technology	in	Music	Instruction	(ATMI)	2009	Conf.	Portland,	OR.	
[6]	 Greher,	G.R.,	&	Heines,	J.M.	(2014).	Computational	Thinking	in	Sound.	New	York:	Oxford	University	Press.	
[7]	 Heines,	J.M.,	Jeffers,	J.,	&	Kuhn,	S.	(2008).	Performamatics:	Experiences	with	Connecting	a	Computer	Science	Course	to	a	

Design	Arts	Course.	Int'l.	Jrnl.	of	Learning	15(2):9‐16.	
[8]	 Heines,	J.M.,	Greher,	G.R.,	&	Kuhn,	S.	(2009).	Music	Performamatics:	Interdisciplinary	Interaction.	Proc.	of	the	40th	

ACM	Tech.	Symposium	on	CS	Education,	pp.	478‐482.	Chattanooga,	TN:	ACM.	
[9]	 Heines,	J.M.,	Greher,	G.R.,	Ruthmann,	S.A.,	&	Reilly,	B.	(2011).	Two	Approaches	to	Interdisciplinary	Computing+	Music	

Courses.	IEEE	Computer	44(12):25‐32.	
[10]	Ho,	W.‐C.	(2004).	Use	of	information	technology	and	music	learning	in	the	search	for	quality	education.	British	Jrnl.	of	

Educational	Technology	35(1):57‐67.	
[11]	Kohl,	H.	(1994).	“I	Won’t	Learn	from	You”	and	Other	Thoughts	on	Creative	Maladjustment.	NY:	The	New	Press.	
[12]	Magerko,	B.,	Freeman,	J.,	McKlin,	T.,	McCoid,	S.,	Jenkins,	T.,	&	Livingston,	E.	(2013).	Tackling	engagement	in	com‐

puting	with	computational	music	remixing.	Proc.	of	the	44th	ACM	Tech.	Symposium	on	CS	Education,	pp.	657‐662.	
[13]	Martin,	F.,	Greher,	G.R.,	Heines,	J.M.,	Jeffers,	J.,	Kim,	H.‐J.,	Kuhn,	S.,	Roehr,	K.,	Selleck,	N.,	Silka,	L.,	&	Yanco,	H.	(2009).	

Joining	Computing	and	the	Arts	at	a	Mid‐Size	University.	Jrnl.	of	Computing	Sciences	in	Colleges	24(6):87‐94.	
[14]	National	Science	Foundation	(2007).	NSF	Award	#0722161	‐	CPATH	CB:	Performamatics:	Connecting	Computer	

Science	to	the	Performing,	Fine,	and	Design	Arts.	CNS:	Division	of	Computer	and	Network	Systems,	
www.nsf.gov/awardsearch/showAward?AWD_ID=0722161	accessed	Nov.	4,	2013.	

[15]	National	Science	Foundation	(2011).	NSF	Award	#1118435	‐	Computational	Thinking	through	Computing	and	Music.	
DUE:	Division	of	Undergrad.	Ed.,	www.nsf.gov/awardsearch/showAward?AWD_ID=1118435	accessed	Nov.	4,	2013.	

[16]	Pencil	Code	(2016).	Dream	it.	Code	it.	pencilcode.net	accessed	8/16/2016.	
[17]	Platten,	R.,	&	Bassett,	D.	(2015).	Fight	Song:	Columbia	Records.	
[18]	Ruthmann,	S.A.,	&	Heines,	J.M.	(2009).	Designing	Music	Composing	Software	with	and	for	Middle	School	Students:	A	

Collaborative	Project	among	Senior	Computer	Science	and	Music	Education	Majors.	Association	for	Technology	in	
Music	Instruction	(ATMI)	2009	Conference.	Portland,	OR.	

[19]	Ruthmann,	S.A.,	Greher,	G.R.,	&	Heines,	J.M.	(2012).	Real	World	Projects	for	Developing	Musical	and	Computational	
Thinking.	30th	Int'l	Society	for	Music	Education	(ISME)	World	Conf.	on	Music	Ed.	Thessaloniki,	Greece.	

[20]	Scratch	(2016).	Create	stories,	games,	and	animations;	Share	with	others	around	the	world.	scratch.mit.edu	accessed	
Aug.	16,	2016.	

[21]	Shlien,	S.	(2017).	EasyABC.	easyabc.sourceforge.net	accessed	Aug.	8,	2017.	
[22]	Soundtrap	(2017).	Soundtrap	Education.	www.soundtrap.com/edu/	accessed	Aug.	13,	2017.	
[23]	Stinson,	L.	(2013).	Google	and	apple	alums	invent	adorable	robots	that	teach	kids	to	code.	Wired.	
[24]	Studer,	K.	(2005).	Maximum	Technology	in	the	Music	Classroom:	Minimum	Requirements.	Teaching	Music	13(3):44‐47.	
[25]	Swift,	T.,	Martin,	M.,	&	Shellback	(2014).	Shake	It	Off:	Big	Machine	Records.	
[26]	Tatun,	B.	(1997).	"Why	Are	All	the	Black	Kids	Sitting	Together	in	the	Cafeteria"	and	Other	Conversations	About	Race.	

New	York:	Basic	Books.	
[27]	Walshaw,	C.	(2017).	ABC	Notation.	abcnotation.com	accessed	Aug.	8,	2017.	
[28]	Wolfe,	J.	(2017).	Note	names,	MIDI	numbers	and	frequencies.	newt.phys.unsw.edu.au/jw/notes.html	accessed	Aug.	8,	

2017.	

	

