
COVER FE ATURE

25DECEMBER 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

know nothing about them. When you identify them and

check their primary fields of study, you see that one is a

computer science major, the other a music major. Which

do you assume is the more creative?

Surely, most of us would say it is the music major. The

general perception is that people in the arts are more

creative than those in the sciences, particularly those in

computing. But is this truly the case?

Consider the types of learning experiences that char-

acterize each field. In music, students mainly focus on

the re-creation of art. They learn to master their instru-

ments by studying someone else’s original creations. The

composition of original works is advanced study, typically

pursued by only a handful of music majors and usually at

the graduate level.

In CS, students might initially re-create programs that

implement known algorithms, but they quickly progress to

writing original programs to solve problems. Those prob-

lems might be carefully bounded, but good students tend

to devise solutions that exhibit a wide range of approaches.

It is interesting to note that music students also must

learn concepts and syntax. Think of staves, notes, key sig-

natures, accidentals, fingerings, and so on. The difference

is what they do with these. In general, they apply what they

have learned to try to play a piece exactly as their teachers

say it should be played. CS students try to apply what they

have learned to solve a problem outlined by their teachers.

So, on reconsideration, which do you now judge to be

the more creative?

T he intersection of computing and music can

enrich pedagogy in numerous ways, from low-

level courses that use music to illustrate practical

applications of computing concepts to high-level

ones that use sophisticated computer algorithms to pro-

cess audio signals.

We explore the ground between these extremes by

describing our experiences with two types of interdisci-

plinary courses. In the first, arts and computing students

worked together to tackle a joint project, even though they

were taking independent courses. In the second, all stu-

dents enrolled in the same course, but every class was

taught by two professors: one from music and the other

from computer science. This course was designed to teach

computing and music together, rather than as one in ser-

vice to the other.

WHO’S THE MORE CREATIVE?
It is the first day of a new semester. Two students walk

into your class. You have never seen them before, and you

The developers of a university curriculum
designed to bridge the gaps between the
two disciplines have found that there are
numerous ways to introduce arts majors to
computing, and science and engineering
majors to the arts.

Jesse M. Heines, Gena R. Greher, S. Alex Ruthmann, and Brendan L. Reilly

University of Massachusetts Lowell

Two Approaches
to Interdisciplinary
Computing+Music
Courses

COVER FE ATURE

COMPUTER 26

INTERDISCIPLINARY LEARNING
It is not our purpose, of course, to instigate an argument

over who is more creative than whom. But it certainly is

our purpose to break stereotypes and to stress that when

we look at science and engineering majors versus their

peers in the arts, business, and other supposedly non-

technical majors, it is clear that they have much to learn

from each other. It is not much of a stretch to assert that the

technologies most of our CS graduates will be working on

5 to 10 years after they graduate probably have not been

invented yet. This can make it a bit hard to decide what or

how we should teach them. We have therefore based our

work on the following postulates.

Once our CS students graduate, it is very likely that they

will never again write a program of any significant size by

themselves. Instead, they will work in teams, and those

teams will undoubtedly be interdisciplinary. Even if certain

members of the team do not write a single line of code,

they will have a say not only in what a program does, but

also in how it is implemented.

Basic skills will remain basic. An array will always be an

array, and a linked list will always be a linked list. With all

the buzz about students seeking CS programs with concen-

trations in game development, programmers who succeed

in that subfield will be those who understand that interest-

ing games are built on the fundamentals of algorithms and

data structures, just as musicians understand that interest-

ing music is built on the fundamentals of melody, rhythm,

and harmony. As Michael Zyda stated, “The game industry

… wants graduates with a strong background in computer

science. It does not want graduates with watered-down com-

puter science degrees, but rather an enhanced set of skills.”1

The need for everyone to have basic computer skills will

only increase. Jeanette Wing stated that the basic skill

in problem solving is “computational thinking,” which

“involves solving problems, designing systems, and un-

derstanding human behavior, by drawing on the concepts

fundamental to computer science.”2 According to Wing,

this “is a fundamental skill for everyone, not just for

computer scientists.” We strongly agree, and we feel that

exposing arts students to computational thinking within

their own field has huge potential for enhancing their

education.

Everyone has something to learn from everyone else.

Virtually all jobs today involve interdisciplinary teams,

and working in such teams usually requires abandoning

assumptions about our coworkers’ fields. Reflecting on one

of the assignments in our interdisciplinary course, a CS

major wrote, “It was great to work with someone as musi-

cally (and graphically) inclined as Maria [a music major]. I

lack a lot of knowledge about both of those, and her ideas

made very notable improvements in the programming as

well as the music and graphics.” Note that the CS major

specifically mentions improvements to the programming

based on ideas from the music major.

COMPUTING+MUSIC COURSES
To address these issues, we developed two interdisciplin-

ary course models that our colleague Fred Martin dubbed

synchronized and hybrid.3 The synchronized model pairs

two independent, upper-level courses in different disciplines

and requires interdisciplinary teams of students to com-

plete a project collaboratively. The hybrid model is a single

course taught by two professors from different disciplines,

with both in the classroom throughout the semester.

These are, of course, but two of myriad models em-

ployed in interdisciplinary computing+music courses.

To put our work in perspective, we took an informal look

at 52 courses at 40 colleges and universities that cover

computing through music or music through computing.

Some of these were identified by attendees at a March

2011 workshop on this topic under the auspices of the

ACM SIGCSE Music Committee4 and sponsored by the NSF-

funded LIKES project5 (www.likes.org.vt.edu). Additional

courses were found by the student researcher on our team,

who searched the Web for syllabi that combined comput-

ing and music in interdisciplinary courses.

Our search criteria specifically excluded audio record-

ing and production courses that have the shaping of sound

through electronics and signal processing as their primary

objectives. Although these courses fall at the intersection

of computing and music, they focus on using technology to

achieve desired sounds rather than teaching computational

and musical concepts together. Table 1 presents general

information about the courses we discovered and gives an

overall picture of the landscape.

Table 2 presents the content of the 52 courses, as

gleaned from their posted syllabi. This is an inexact mea-

sure, to be sure, but it still gives a somewhat reasonable

view of the field. (The numbers in each section do not add

Table 1. Computing+Music course offerings.

Listing department Number Percent

Music 40 77

Computer science 9 17

Co-listed 3 6

Type of instruction Number Percent

Single instructor 28 54

Team teaching 8 15

Not identified 16 31

Student level targeted Number Percent

1st- and 2nd-year undergraduates 21 40

3rd- and 4th-year undergraduates 19 37

Graduate students 5 10

Multiple levels 7 13

27DECEMBER 2011

up to 52 and the percentages do not total 100 percent be-

cause some entries fall into more than one category.)

There is indeed a large range of courses offered, subjects

covered, perspectives taken, teaching styles employed, and

software systems used. Based on a review of this data and

reflections on our familiarity with some of the teachers of

these courses, the following overall picture emerges:

 At the upper end of the curriculum, virtually all

courses that cover computing+music are advanced

offerings by music departments. We know of no upper-

level CS courses dedicated to addressing issues faced

by musicians (although of course there may be some

unknown to us).

 Courses and research at the upper end require deep

understanding of both computation and music. Ex-

amples include the algorithmic composition work by

Michael Edwards6 and by Andrew Brown and Andrew

Sorenson.7

 At the lower end of the curriculum, music is typically

used to demonstrate or to introduce concepts. This is

music in service to computing, not music integrated

with computing. An example is the media computa-

tion work by Mark Guzdial and Barbara Ericson.8

Our work attempts to fill some of the gaps between these

types of courses by integrating computing and music at a

high conceptual level. The synchronized course targets

mid- to upper-level music and CS majors with the intent of

furthering students’ knowledge of both. The hybrid course

is a general education offering open to all students in the

university. It attempts to provide an understanding of where

computing and music interact, at a level that is accessible to

students without deep knowledge of one or the other. Thus,

our work is at both ends of the instructional spectrum.

COMBINED GUI PROGRAMMING
AND MUSIC METHODS

One way to get started in interdisciplinary teaching

and learning is to connect the students in two existing

courses through a joint project. Administratively, this is a

“low-hanging fruit” approach because it does not involve

getting a new course approved or making any changes to

the course catalog. All that is needed are professors who

agree to collaborate with each other to build an interdisci-

plinary project into their courses.

In our case, the CS professor teaches a project-based

course in graphical user interface programming, which

fit nicely with a project-based course on teaching methods

taught by the music professors. After reviewing the proj-

ects that we assign in our respective courses, we decided

to make our initial foray into interdisciplinary teaching

using a “found instruments” project that has been used in

music for years.

The music assignment
For the musicians, the purpose of our assignment is

similar to Andrew Hugill’s description of a project in-

tended “to strip away previous ideas of ‘musicianship,’

[by] reevaluating the sounding properties of objects,

how they may be made into instruments, how playing

techniques might be developed, and how music may be

created as a result.”9 Music students are asked to do the

following:

 Using only household object(s), create a musical “in-

strument” that can produce several different pitches

or timbres. Your instrument must be able to produce

several different types of sounds, or sounds with sev-

eral different characteristics.

 Create a composition for your instrument that em-

ploys a specific musical form of your choice. It need

not be long. A 2-3 minute piece is sufficient, but it must

include distinct sections that give it form. That is, your

composition must include distinctive opening, middle,

and closing sections.

 Devise a system of creative notation that others will be

able to understand well enough to perform your com-

position. Your notational system should not resemble

traditional musical notation in any way.

Table 2. Computing+Music course content.

Disciplines covered Number Percent

Sound/audio 37 71

Computer science 36 69

Music (composition) 22 42

Music (theoretical) 12 25

Media 5 5

Primary focus Number Percent

Composition 31 60

Sound symbols 27 52

CS (introductory) 18 35

Sound processing 17 33

CS (specialized) 12 23

Music theory 7 13

Interactive media 1 2

Software used Number Percent

Max/MSP 11 21

Audacity 4 8

Processing 4 8

SuperCollider 3 6

ChucK, Disklavier, Pro Tools, Reason 2 each 4 each

Audition, Garage Band, Matlab, Peak,

PureData, Reaktor, Scratch, Sibelius

1 each 2 each

Figure 2. Mike’s notation for his composition.

COVER FE ATURE

COMPUTER 28

 Bring your instrument and notated composition to

class. Come prepared to explain your work and to

perform your piece.

To achieve camaraderie and pique interest, the CS

majors are also given this assignment. Our experience is

that the CS students “find” instruments that exhibit just as

much novelty as those of their music counterparts. When

we get the students from the two courses together, we

do several things to build community, including having

them jam on their instruments in mini-ensembles. Again,

the CS students “get into” this project just as much as

the music students, and the resultant “music” is, well,

“interesting.”

In another class activity, students try to play each

other’s found instruments from the notations created for

those instruments. We have them do this without first

hearing the original composer play the piece and without

any verbal explanation of the notational system. This is a

good test of the communicability of the notation by itself,

and it opens up several avenues for discussion of human

factors. As an example of this activity, see www.youtube.

com/watch?v=IJuGoYnCxSs.

The computing assignment
The found instruments project connected to computing

through the creative notation. In this project, we

 introduced CS students to standard music notation

software using Finale NotePad (www.finalemusic.

com/NotePad) and Noteflight (www.noteflight.com);

 assigned CS and music teams and charged the CS stu-

dents with creating a music notation program for the

notation devised by their music partners; and

 scheduled several joint classes in which the music

students could work with the CS students on the

programs’ designs, review the CS students’ works in

progress and offer comments and suggestions for im-

proving the programs, and finally act as usability test

subjects on the finished products.

Some of the programs produced as a result of these

collaborations and the lessons learned from them were

truly astounding.

As Figure 1 shows, in one of the best of these proj-

ects, Mike, a music student, used his jacket as a found

instrument, creating sounds by slapping it, rubbing it,

working the zipper, and so on. He then created a piece

satirically named Eine Kleine Jacket Musik. Figure 2

shows an excerpt from Mike’s creative notation. Perfor-

mances of Mike’s piece first by Chase, a CS student, and

then by Mike himself are posted at www.youtube.com/

watch?v=iD4dEZOTiIg.

Figure 3 shows part of Mike’s partner Chris’s composi-

tion to demonstrate the CS concepts and skills involved in

developing such a program.

In Figure 3a, a few icons from the tool palette on the

left in the composition program have been placed onto the

right- (R) and left-hand (L) staves in the composing area by

either dragging and dropping them or double-clicking on

them in the tool palette. In Figure 3b, the insertion cursor

is positioned between the sixth and seventh icons on the

left-hand staff, as indicated by the thick vertical bar. At this

point, double-clicking on an icon in the tool palette would

insert the icon to the right of the insertion cursor, which is

to the left of the last icon on staff L.

In Figure 3c, the backspace key has just been pressed,

and the blank (or “rest”) icon that the arrow cursor in

Figure 3b pointed to has disappeared. The issue is that the

thick vertical bar insertion cursor has also disappeared,

Figure 1. Mike playing his jacket as a found instrument.

29DECEMBER 2011

leaving users to wonder where the insertion point is. In

most editors, the insertion point would not change—that

is, if the user double-clicked an icon in the tool palette at

this point, that icon would still be inserted to the left of the

right-most hand icon on staff L.

Unfortunately, this is not what happens. Instead, when

the “scratch” icon is double-clicked, it is inserted at the

beginning of the staff, as Figure 3d shows. This may be

fully logical to a programmer who has implemented the

composition area as a pair of linked lists, but it is not at

all logical to someone used to working with any sort of

text editor.

When the anomaly was pointed out to Chris, he imme-

diately recognized the problem and said, “I can’t believe I

didn’t notice that.” But that’s exactly why usability tests are

needed. Programmers are often “too close” to their work to

see even the most obvious user interface issues. Teaching

this point in a lecture setting requires students to mentally

connect theory and practice. When it is learned from a peer

while testing the student’s own software, the connection

is far more concrete, and the lesson is learned at a deeper

level that is more personal and, therefore, more effective.

Thus, the fresh views of students in other disciplines

can teach valuable lessons to our computing students.

Likewise, for music majors, helping nonmusicians translate

their musical concepts into computer programs can shed

light on the clarity of their thinking—or lack thereof. Such

reciprocal learning,10 in which students learn from each

other instead of just from their professors, exemplifies

one of the best characteristics of interdisciplinary courses.

SOUND THINKING
Our synchronized courses worked well at the upper end

of our curricula, but we also wanted to work at the lower

end so that we could introduce more students to the ben-

efits of interdisciplinary courses. Following the pioneering

work of Holly Yanco and colleagues in combining art and

robotics at our university,11 we developed Sound Thinking,

a new hybrid course that could be offered to all students in

the university (http://soundthinking.uml.edu).

Two characteristics about the way in which Sound Think-

ing was put into the course catalog contributed significantly

to its success. First, it was co-listed in both the music and

CS departments. Second, we applied for and were granted

general education status for the course. Arts students who

take it register using the CS department number and receive

science and technology general education credit. Science

students register using the music department number and

Figure 3. Chris’s music composition program for Mike’s jacket notation. (a) State 1: a few icons from the tool palette on the left

in the composition program have been placed onto the right- (R) and left-hand (L) staves in the composing area. (b) State 2: the

insertion cursor is positioned between the sixth and seventh icons on the left-hand staff. (c) State 3: the icon pointed to by the

arrow cursor in Figure 3b has been deleted. (d) State 4: the scratch icon in the tool palette (indicated by the arrow cursor) has

been double-clicked to insert it into the composition.

(a)

(c)

(b)

(d)

COVER FE ATURE

COMPUTER 30

receive arts and humanities credit. These characteristics

were essential to achieving the critical number of registra-

tions needed for the course to run, especially with two

professors present at all class meetings.

Revisiting found instruments
We also used the found instruments project at the

beginning of Sound Thinking, but we took it in another

direction. After students created their instruments and

notations, we had them record the sounds their instru-

ments could make and then used those as an introduction

to sound editing.

Eric, a CS student, created what he called a “lever drumi-

tar,” shown in Figure 4. He strung a guitar string across the

opening of a cup, secured it with strong tape, and rigged up

a carabiner to use as a lever for changing the cable’s ten-

sion. This allowed him to produce different sounds when

he strummed the cable with a soda can tab.

Figure 5 shows the original notation that Eric created

for his instrument. Each row represents an action. If the

square in the second column is filled in, the string is to be

strummed. A V in the third column indicates that the time

duration is to be shortened. The length of the line in the

fourth column indicates the carabiner’s position.

For the next assignment, students recorded the

various sounds their found instruments could gener-

ate and loaded them into Audacity. They then created

original compositions by looping and combining those

sounds. To hear Eric’s original lever drumitar sounds

and his remixed composition, go to www.youtube.com/

watch?v=_zA_hn_4T8k.

Extending found instruments
For the next assignment, students loaded their sounds

using the Scratch programming language12 and sequenced

those sounds by chaining “play sound until done” blocks

together. Initially, they just created linear chains like that

shown in Figure 6a. When they wanted to repeat a sound

or just use it again, they simply dragged in another block

and selected the sound they wanted it to play.

With a bit of experimentation, all the students suc-

ceeded in creating Scratch programs that used looping

as shown in Figure 6b. With a bit more instruction and

encouragement, most students were able to incorporate

variables, nested loops, and conditional structures as

shown in Figure 6c, as well.

Finally, with help from each other rather than from

the professors—which indicates true student involvement

in the course and is the best way for them to learn: by

teaching others—some students figured out how to do

more advanced things, such as playing two or more sounds

simultaneously using the “play sound” and “broadcast”

and its complementary “when I receive” block, leading to

interesting and sometimes relatively complex discussions

about synchronization.

Many CS concepts are at play here, and we use the word

“play” intentionally. The Scratch development group at the

MIT Media Lab is called the Lifelong Kindergarten Group

for good reason. The ability to learn through thoughtful

play that involves the use of creativity is at the heart of

what we are trying to achieve. The music and arts students

learn about computing, to be sure, but so do the CS and

engineering students.

Using a visual programming environment like Scratch

forces CS majors—who have been “brought up” on lan-

guages like C/C++ and Java and on text-based coding

environments—out of their comfort zone. It is amazing how

many of them stumble when they discover that a Scratch

loop does not provide access to its index (counter) vari-

able. It is pretty easy for them to implement a counter, but

solving this problem requires a bit of creative thinking. In

addition, explaining to their nontechnical peers what they

are doing not only increases their partners’ understanding,

but solidifies their own as well. As the saying goes, “If you

really want to learn something, teach it to someone else.”

Sound Thinking builds on the found instruments

project and its related assignments by introducing MIDI

concepts and generating music using Scratch’s various

Figure 5. Notation for playing the lever drumitar.

Figure 4. Top view of the lever drumitar.

31DECEMBER 2011

“sound” blocks, shown in Figure 7. We have created several

different types of assignments using these blocks, includ-

ing having students write a composition based on only

major 2nds and perfect 5ths (to take music majors out of

their Western music comfort zone), writing algorithms

to transpose lists as either MIDI values or interval deltas

into different keys, and coding multiple parts that must be

carefully synchronized.

These and other assignments are described in detail

at soundthinking.uml.edu. Through these assignments,

music majors learn about computing, and CS students

learn about music.

INTERDISCIPLINARY TEACHING
One measure of the success of our work is the lasting

effect it has on students. This is difficult to assess, but the

number of students who return semesters later to tell us

how they applied the concepts they learned in a different

context gives us confidence that at least some of the ac-

tivities we developed have generated good results. We are

currently working to devise more rigorous evaluations to

substantiate this belief.

In addition, the effects of our interdisciplinary experi-

ences were not limited to the students. The professors also

learned from each other, not only about discipline-specific

content, but also about teaching and pedagogy. As the

NSF evaluator of our Performamatics project wrote in her

final report:

Figure 6. Scratch programs that chain sound blocks together to play (a) a straight sequence of sounds, (b) a sequence of

sounds using loops, and (c) a looped sequence with conditionals.

(a)

(c)

(b)

Figure 7. Blocks available from the Scratch sound panel.

COVER FE ATURE

COMPUTER 32

One CS faculty member … changed his approach to teach-

ing significantly in some situations, assigning more open-ended

projects, a change well received by students. … Change in faculty

is an essential but often overlooked element of institutional and

curricular change.

The professors’ experiences in teaching with each other

were so positive that they continued to do so even after

the original NSF funding expired. Then in 2011, we were

awarded a grant from the NSF TUES program to dissemi-

nate our work in a series of workshops for interdisciplinary

pairs of professors. The first of these free workshops will

be offered 21-22 June 2012. Faculty interested in attending

are invited to visit www.performamatics.org for further

information and to apply.

Our explorations of ways to bridge the gaps in

computing+music education are really just beginning. We

believe that there are many more ways to introduce arts

majors to computing and science and engineering majors

to the arts, and that our approaches offer effective ways

to work toward that goal in an undergraduate institution.

We are constantly working to improve our current meth-

ods and to extend our work into more advanced offerings

that move into live coding13-15 and text-based music coding

environments such as SuperCollider, Impromptu, Process-

ing, and Max/MSP.

Acknowledgments

This work is supported by National Science Foundation

Awards 0722161 and 1118435. In addition to the authors, Fred

Martin and Sarah Kuhn of the University of Massachusetts

Lowell and Scott Lipscomb of the University of Minnesota

are members of these project teams. Lipscomb thoroughly

reviewed an early draft of this article and provided significant

suggestions for improvement. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of the NSF. Please see www.performamatics.org for

further information, including how to apply to attend our

NSF-sponsored workshop.

References

 1. M. Zyda, “Computer Science in the Conceptual Age,”

Comm. ACM, vol. 52, no. 12, 2009, pp. 66-72.

 2. J.M. Wing, “Computational Thinking,” Comm. ACM, vol. 49,

no. 3, 2006, pp. 33-35.

 3. F. Martin et al., “Joining Computing and the Arts at a Mid-

size University,” J. Computing Sciences in Colleges, vol. 24,

no. 6, 2009, pp. 87-94.

 4. R. Beck and J. Burg, “Report on the LIKES Workshop on

Computing and Music,” ACM SIGCSE Music Committee, to

be published in 2012.

 5. W. Chung et al., “LIKES: Educating the Next Gen-

eration of Knowledge Society Builders,” Proc. 15th
Americas Conf. Information Systems (AMCIS 09), Assoc.

for Information Systems, 2009; www.likes.org.vt.edu/files/

LIKES_AMCIS09_pub.pdf.

 6. M. Edwards, “Algorithmic Composition: Computational

Thinking in Music,” Comm. ACM, vol. 54, no. 7, 2011, pp.

58-67.

 7. A.R. Brown and A. Sorensen, “Interacting with Generative

Music through Live Coding,” Contemporary Music Rev., vol.

28, no. 1, 2009, pp. 17-29.

 8. M. Guzdial and B. Ericson, Introduction to Computing and
Programming in Java: A Multimedia Approach, Prentice

Hall, 2005.

 9. A. Hugill, The Digital Musician, Routledge, 2008.

 10. H.F. Silver, R.W. Strong, and M.J. Perini, Strategic Teacher:
Selecting the Right Research-Based Strategy for Every
Lesson, chapt. 13, Assoc. for Supervision & Curriculum

Development, 2008.

 11. H.A. Yanco et al., “Artbotics: Combining Art and Robotics

to Broaden Participation in Computing,” Proc. AAAI Spring
Symp. Robots and Robot Venues: Resources for AI Educa-
tion, 2007; www.cs.hmc.edu/roboteducation/papers2007/

c39_yancoArtbotics.pdf.

 12. M. Resnick et al., “Scratch Programming for All,” Comm.
ACM, vol. 52, no. 11, 2009, pp. 60-67.

 13. A. Brown, “Generative Structures Performance,” 2011;

http://vimeo.com/26193440.

 14. A. Ruthmann, “Live Coding & Ichiboard-Enhanced Perfor-

mance,” 2011; www.youtube.com/watch?v=qehSEroHn4E.

 15. A. Sorenson and A. Brown, “aa-cell Live Coding at the

Loft 2,” 2007; www.youtube.com/watch?v=tj74-q_Mxrg.

Jesse M. Heines is a professor of computer science at the
University of Massachusetts Lowell, with a strong interest
in music and its power to interest students in computing.
Heines received an EdD in educational media and tech-
nology from Boston University. Heines and Gena Greher
are writing a book on interdisciplinary teaching that is
currently under contract with Oxford University Press.
Contact him at jesse_heines@uml.edu.

Gena R. Greher is an associate professor of music educa-
tion at the University of Massachusetts Lowell. Her research
focuses on creativity and listening skill development in
children and on examining the influence of integrating
multimedia technology in urban music classrooms. Greher
received an EdD in music and music education from the
Teachers College of Columbia University. Contact her at
gena_greher@uml.edu.

S. Alex Ruthmann is an assistant professor of music edu-
cation at the University of Massachusetts Lowell, where he
teaches courses at the intersection of music education and
arts computing. His research explores social/digital media
musicianship and creativity, as well as the development of
technologies for music learning. Ruthmann received a PhD
in music education from Oakland University, Michigan.
Contact him at alex_ruthmann@uml.edu.

Brendan L. Reilly is an undergraduate computer science
major at the University of Massachusetts Lowell. He has
played bass since grade school, participating in every musi-
cal group available to him. Contact him at brendan_reilly@
student.uml.edu.

